Dr. Liao Chang

Dr. Liao Chang is an Associate Professor (with tenure) and Principal Investigator at the School of Earth and Space Sciences at Peking University. He holds a Young Professionals Fellowship by the Recruitment Program of Global Experts (China, 2015). He is heading an active group of several post-docs and students addressing a wide range of problems in rock and mineral magnetism, environmental magnetism, and marine geology & geophysics.

Dr. Chang’s current research focuses on using magnetic mineral records to understand the evolution of Earth systems, including climatic, tectonic, geological and geophysical processes. The Chang’s group study the magnetic mineral assemblages and associated magnetic signals of natural materials collected from ocean scientific cruises and outcrops, and synthetic analogies, and seeks applications of using magnetic signals from natural samples to trace important processes in Earth and Environmental Sciences. Applications of current research include using paleomagnetism, and rock and mineral magnetism to understand paleoclimate and paleoenvironmental changes, particularly Eocene global warming events; geodynamical processes in the mid-ocean ridges; recent geomagnetic field variations; and environmental processes in the marginal seas.

Dr. Chang is also interested in fundamental rock and mineral magnetism, biogeomagnetism, modelling the acquisition of natural remanent magnetization, and micromagnetic simulation.

Contact: liao.chang (at) pku.edu.cn.


  • Fundamental rock and mineral magnetism. Understanding the complex magnetic recording processes in natural materials requires a fundamental knowledge of the properties of constitute magnetic minerals. We investigate common terrestrial magnetic minerals, including iron sulphides, iron oxides, iron-titanium oxides, that have originated from either chemical precipitation, biological synthesis or environmental weathering. Studies range from atomic-scale magnetic mineral structures to fundamental rock magnetic properties.
  • Investigating the fundamental paleomagnetic recording processes (depositional remanent magnetization – DRM/post-deposional remanent magnetization – PDRM/chemical remanent magnetization – CRM) to understand how marine sediments acquire the remanent magnetization. To do this, we use a combined experimental and numerical approach: we do laboratory redeposition experiments under controlled conditions, and also build numerical models in order to get a better picture of the magnetic recording processes in marine sediments.
  • Developing the state-of-the-art environmental magnetic proxies for paleoenvironmental and paleoclimate reconstructions. Traditional environmental magnetic approach often rely heavily on simple bulk magnetic parameters and their ratios. We take a different approach: we combine direct microscopic observations, advanced rock magnetism, and mathematical unmixing. This is to get a much better understanding about environmental processes recorded by magnetic minerals, and to develop more robust magnetic proxies for paleoenvironmental reconstructions.
  • Marine sedimentary records of abrupt climate events during the Cenozoic. We are mostly interested in Eocene hyperthermal events (initiations, processes, and environmental impacts). We use materials from ocean drilling cores (ODP/IODP) in different oceans and continental outcrops of marine sedimentary sequences.
  • Reconstruction of geomagnetic field variations and paleoenvironmental changes using marine sediments deposited along oceans in Asia. We work on marine sediment cores from Bengal Fan in South Asia up to North Pacific Ocean.
  • Geodynamics of middle-ocean-ridges and hydrothermal sites. We work on marine magnetics of slow-spreading mid-ocean ridges in the Southwest India ocean, southwest Pacific and Trans-Atlantic Geotraverse (TAG) hydrothermal site.

Curriculum Vitae

  • 2005.09–2009.05, Ph.D. School of Ocean and Earth Science, University of Southampton, UK
  • 2004.08–2005.08, M.S. Institute of Geology and Geophysics, Chinese Academy of Sciences
  • 2000.09–2004.07, B.S., Geophysics (Major) Department of Geophysics, Peking University, China
  • 2000.09–2004.07, B.S., Economics (Minor) China Center for Economic Research, Peking University, China


  • 2021.01–to now, Associate Professor with tenure, School of Earth and Space Sciences, Peking University, China
  • 2015.09–2020.12, Assistant Professor and Principle Investigator, School of Earth and Space Sciences, Peking University, China
  • 2013.10–2015.09, Research Fellow, Research School of Earth Sciences, the Australian National University, Australia
  • 2011.09–2013.09, Postdoc researcher, Faculty of Geosciences, Utrecht University, The Netherlands
  • 2009.05–2011.08, Natural Environmental Research Council (NERC) PDRA, National Oceanography Centre, University of Southampton, UK
  • 2010.01–2010.04 Japan Society for the Promotion of Science (JSPS) invited Research Fellow, Center for Advanced Marine Core Research, Kochi University, Japan


  • Geodynamics (undergraduate)
  • Marine Environments (undergraduate)
  • Rock Magnetism and Applications (graduate)
  • Methods in Structural Geology (graduate)


  • Royal Society-Newton Advanced Fellowship, 2020.
  • Natural Science Foundation of China (NSFC) Excellent Young Scientist Award, 2017.
  • Recruitment Program of Global Experts (Young Professionals), China, 2015.
  • Japan Society for the Promotion of Science (JSPS) invited fellow, Kochi University, Japan, 2009.
  • Dorothy Hodgkin Postgraduate Award, University of Southampton, UK, 2005–2008
  • Visiting Fellowship, Institute for Rock Magnetism, University of Minnesota, USA, 2006, 2007, 2019.
  • Visiting Fellowship, Institut Laue-Langevin, France, 2006, 2007

Fieldwork & cruise


  • Chang, L., Hong, H., Bai, F., Wang, S., Pei, Z., Paterson, G.A., Heslop, D., Roberts, A.P., Huang, B., Tauxe, L., Muxworthy, A.R., 2021. Detrital remanent magnetization of single-crystal silicates with magnetic inclusions: constraints from deposition experiments. Geophysical Journal International. 224, 2001-2015, https://doi.org/10.1093/gji/ggaa559.
  • Berndt, T.A., Chang, L., Paterson, G.A., Cao, C., 2021. Experimental test of the cooling rate effect on blocking temperatures in stepwise thermal demagnetization. Geophysical Journal International. 224, 1116-1126, https://doi.org/10.1093/gji/ggaa514.
  • Wang, S., Chang, L., Wu, T., Tao, C., 2020. Progressive dissolution of titanomagnetite in high‐temperature hydrothermal vents dramatically reduces magnetization of Basaltic Ocean crust. Geophysical Research Letters. 47, e2020GL087578. https://doi.org/10.1029/2020GL087578.
  • Sutherland, R., G.R. Dickens, P. Blum, C. Agnini, L. Alegret, G. Asatryan, J. Bhattacharya, A. Bordenave, Chang, L., J. Collot, M.J. Cramwinckel, E. Dallanave, M.K. Drake, S.J.G. Etienne, M. Giorgioni, M. Gurnis, D.T. Harper, H.-H.M. Huang, A.L. Keller, A.R. Lam, H. Li, H. Matsui, H.E.G. Morgans, C. Newsam, Y.-H. Park, K.M. Pascher, S.F. Pekar, D.E. Penman, S. Saito, W.R. Stratford, T. Westerhold, X. Zhou, 2020. Continental-scale of geographic change across Zealandia during Paleogene subduction initiation. Geology. 48, https://doi.org/10.1130/G47008.1
  • Berndt, T.A., Chang, L.Pei, Z., 2020. Mind the gap: Towards a biogenic magnetite palaeoenvironmental proxy through an extensive finite-element micromagnetic simulation. Earth and Planetary Science Letters, 532, https://doi.org/10.1016/j.epsl.2019.116010.
  • Dallanave, E., Chang, L. 2020. Early Eocene to early Miocene magnetostratigraphic framework for IODP Expedition 371 (Tasman Frontier Subduction Initiation and Paleogene Climate). Newsletters on Stratigraphy, 53(4), 365-387, https://doi.org/10.1127/nos/2019/0556.
  • Berndt, T. A., Chang, L., 2019. Waiting for Forcot: Accelerating FORC Processing 100x using a Fast-Fourier-Transform Algorithm. Geochemistry, Geophysics, Geosystems, 20, 6223-6233, https://doi.org/10.1029/ 2019GC008380.
  • Chang, L., Harrison, R.J., Berndt, T.A. Micromagnetic simulation of magnetofossils with realistic size and shape distributions: Linking magnetic proxies with nanoscale observations and implications for magnetofossil identification. Earth and Planetary Science Letters, 527, https://doi.org/10.1016/j.epsl.2019.115790, 2019.
  • Hong, H., Chang, L., Hayashida, A., Roberts, A.P., Heslop, D., Paterson, G.A., Kodama, K., Tauxe, L. Paleomagnetic recording efficiency of sedimentary magnetic mineral inclusions: implications for relative paleointensity determinations. Journal of Geophysical Research: Solid Earth, 124, 6267-6279, https://doi.org/10.1029/2018JB016859, 2019.
  • Xue, P., Chang, L., Wang, S., Liu, S., Li, J., Shi, X., Khokiattiwong, S., Kornkanitnan, N. Magnetic mineral tracing of sediment provenance in the central Bengal Fan. Marine Geology, 415, https://doi.org/10.1016/j.margeo.2019.05.014, 2019.
  • Wang, S., Chang, L., Xue, P., Liu, S., Shi, X., Khokiattiwong, S., Kornkanitnan, N., Liu, J. Paleomagnetic Secular Variations during the Past 40,000 Years from the Bay of Bengal. Geochemistry, Geophysics, Geosystems, 20, 2559-2571, https://doi.org/10.1029/2018GC008100, 2019.
  • Berndt, T.A., & L. Chang. Theory of stable multidomain thermoviscous remanence based on repeated domain wall jumps. Journal of Geophysical Research: Solid Earth, 123, 10,399-10,417, https://doi.org/10.1029/2018JB016816, 2018.
  • Chang, L., R.J. Harrison, F. Zeng, T.A. Berndt, A.P. Roberts, D. Heslop, X. Zhao. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum. Nature Communications, 4007, https://doi.org/10.1038/s41467-018-06472-y, 2018.
  • Berndt, T. A., Chang, L., Wang, S., & Badejo, S. Time-asymmetric FORC diagrams: A new protocol
for visualizing thermal fluctuations and distinguishing magnetic
mineral mixtures. Geochemistry, Geophysics, Geosystems, 19, 3056-3070, https://doi.org/10.1029/2018GC007669, 2018.
  • Sutherland, R., G.R. Dickens, P. Blum, and the Expedition 371 Scientists, Expedition 371 Preliminary Report: Tasman Frontier Subduction Initiation and Paleogene Climate, International Ocean Discovery Program, https://doi.org/​10.14379/​iodp.pr.371.2018, 2018.
  • Shi M., H. Wu, A.P. Roberts, S. Zhang, X. Zhao, H. Li, X. Su, T. Yang, L. Chang, P. Hu, X. Zhao, Tectonic, climatic, and diagenetic control of magnetic properties of sediments from kumano basin, nankai margin, southwestern Japan, Marine Geology, 391, 1-12, 2017.
  • Chen, L., D. Heslop, A.P. Roberts, L. Chang, X. Zhao, H.V. McGregor, G. Marino, L. Rodriguez‐Sanz, E.J. Rohling, H. Pälike, Remanence acquisition efficiency in biogenic and detrital magnetite and recording of geomagnetic paleointensity, Geochemistry, Geophysics, Geosystems, 18(4), 1435-1450,https://doi.org/10.1002/2016GC006753, 2017.
  • Chang, L., A.P. Roberts, D. Heslop, A. Hayashida, J. Li, X. Zhao, W. Tian, Q. Huang, Widespread occurrence of silicate-hosted magnetic mineral inclusions in marine sediments and their contribution to paleomagnetic recording, J. Geophys. Res. Solid Earth, 121, 8415-8431, doi:10.1002/2016JB013109, 2016.
  • Chang, L., D. Heslop, A.P. Roberts, D. Rey, K. J. Mohamed, Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature, J. Geophys. Res. Solid Earth, 121, 3-14, doi: 10.1002/2015JB012485, 2016.
  • Chang, L., C.T. Bolton, M.J. Dekkers, A. Hayashida, D. Heslop, W. Krijgsman, K. Kodama, G.A. Paterson, A.P. Roberts, E.J. Rohling, Y. Yamamoto, X. Zhao, Asian monsoon modulation of non-steady state diagenesis in hemipelagic marine sediments offshore of Japan, Geochemistry, Geophysics, Geosystems, 17, 4383-4398, https://doi.org/10.1002/2016GC0063442016.
  • Li, Z., Q. Huang, X. Xie, X. Tang, L. Chang, A Generic 1D forward modeling and inversion algorithm for TEM sounding with an arbitrary horizontal loop, Pure and Applied Geophysics, 173, 2869-2883.
  • Zhao, G.Y., Y. Han, X.M. Liu, L. Chang et al, Can the magnetic susceptibility record of Chinese Red Clay sequence be used for paleomonsoon reconstructions? Geophysical Journal International, 204, 1421-1429, doi: 10.1093/gji/ggv510, 2016.
  • Savian, J. F., Jovane, L., Giorgioni, M., Iacoviello, F., Rodelli, D., Roberts, A. P., L. Chang, F. Florindo, and M. Sprovieri, Environmental magnetic implications of magnetofossil occurrence during the Middle Eocene Climatic Optimum (MECO) in pelagic sediments from the equatorial Indian Ocean, Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 212-222, 2016.
  • Liu, S., C. Deng, J. Xiao, J. Li, G.A. Paterson, L. Chang, L. Yi, H. Qin, and R. Zhu, High-resolution enviromagnetic records of the last deglaciation from Dali Lake, Inner Mongolia, Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 1-11, 2016.
  • Liu, S., C. Deng, J. Xiao, J. Li, G.A. Paterson, L. Chang, L. Yi, H. Qin, Y. Pan, and R. Zhu, Insolation driven biomagnetic response to the holocene warm period in semi-arid East Asia, Scientific Report, 5, 8001, doi:10.1038/srep08001, 2015.
  • Sier, M.J., J. Peeters, M.J. Dekkers, J.M. Parés, L. Chang, F.S. Busschers, K.M. Cohen, J. Wallinga, F.P.M. Bunnik, and W. Roebroeks, The Blake Event recorded near the Eemian type locality – A diachronic onset of the Eemian in Europe, Quaternary Geochronology, 28, 12-28, 2015.
  • Sant, K., A. de Leeuw, L. Chang, G. Czapowski, A. Gąsiewicz and W. Krijgsman, Paleomagnetic analyses on Badenian–Sarmatian drill cores from the North Carpathian foredeep (Middle Miocene, Poland), Biuletyn Panstwowego Instytutu Geologiznego, 461, 179-192, 2015.
  • Chang, L., A.P. Roberts, M. Winklhofer, D. Heslop, M.J. Dekkers, W. Krijgsman, and P. Smith, Magnetic detection and characterization of biogenic magnetic minerals: A comparison of ferromagnetic resonance and first-order reversal curve diagrams, Journal of Geophysical Research – Solid Earth, 119, 6136-6158, 2014.
  • Chang, L., I. Vasiliev, C.G.C. van Baak, W. Krijgsman, M.J. Dekkers, A.P. Roberts, A. van Hoesel and M. Winklhofer, Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea, Geochemistry, Geophysics, Geosystems, 15, 3612-3627, 2014.
  • Winklhofer, M., L. Chang and S. Eder, On the magnetocrystalline anisotropy of greigite (Fe3S4), Geochemistry, Geophysics, Geosystems, 15, 1558-1579, 2014.
    Heslop, D., A.P. Roberts and L. Chang, Recognition of biogenic components from first-order reversal curve signatures, Geochemistry, Geophysics, Geosystems, 15, 2170-2179, 2014.
  • Li, G., B. Zhang, F. Yu, A.A. Novakova, M.S. Krivenkov, T.Y. Kiseleva, L. Chang, J. Rao, A.O. Polyakov, G.R. Blake, R.A. de Groot and T.T.M. Palstra, High purity Fe3S4 greigite microcrystals for magnetic and electro-chemical performance, Chemistry of Materials, 26, 5821-5829, 2014.
  • Chang, L., M. Winklhofer, A.P. Roberts, D. Heslop, F. Florindo, M. J. Dekkers, W. Krijgsman, K. Kodama & Y. Yamamoto, Low-temperature magnetic properties of pelagic carbonates: oxidation of biogenic magnetite and identification of magnetosome chains, Journal of Geophysical Research – Solid Earth, 118, 6049-6065, 2013.
  • Bolton, C.T., L. Chang, S.C. Clemens, K. Kodama, M. Ikehara, M. Medina-Elizalde, G.A. Paterson, A.P. Roberts, E.J. Rohling, Y. Yamamoto and X. Zhao, A 500,000 year record of Indian summer monsoon dynamics recorded by equatorial Indian Ocean upper water-column structure, Quaternary Science Reviews, 77, 167-180, 2013.
  • Roberts, A.P., F. Florindo, L. Chang, D. Heslop, L. Jovane and J.C. Larrasoaña, Magnetic properties of pelagic marine carbonates, Earth-Science Reviews, 127, 111-139, 2013.
  • Heslop, D., A.P. Roberts, L. Chang, M. Davies, A. Abrajevitch and P. De Deckker, Quantifying magnetite magnetofossil contributions to sedimentary magnetizations, Earth and Planetary Science Letters, 382, 58-65, 2013.
  • Muxworthy, A.R., W. Williams, A.P. Roberts, M. Winklhofer, L. Chang and M. Pósfai, Critical single domain grain sizes in chains of interacting greigite particles: implications for magnetosome crystals, Geochemistry, Geophysics, Geosystems, 14, 5430-5441, 2013.
  • Zhao G., X. Liu, Q. Chen, B. Lü, L. Chang, H. Niu, P. Li, H. Guo, and Z. Liu, A long-term increasing aridification and cooling trend at the Chinese Loess Plateau during the Pliocene, Quaternary International, 306, 121-128, 2013.
  • Reichenbacher, B., W. Krijgsman, Y. Lataster, M. Pippèrr, C.G.C. van Baak, L. Chang, D. Kälin, J. Jost, G. Doppler, D. Jung, J. Prieto, H. Abdul Aziz, M. Böhme, J. Garnish, U. Kirscher, V. Bachtadse, A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin, Swiss J. Geoscience, 106, 309-334, 2013.
  • Chang, L., A.P. Roberts, W. Williams, J.D. Fitz Gerald, J.C. Larrasoaña, L. Jovane, and A.R. Muxworthy, Giant magnetofossils and hyperthermal events, Earth and Planetary Science Letters, 351-352, 258-269, 2012.
  • Chang, L., M. Winklhofer, A.P. Roberts, M.J. Dekkers, C-S. Horng, L. Hu, and Q. Chen, Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8) and non-interacting titanomagnetite (Fe3-xTixO4), Geochemistry Geophysics Geosystems, 13, Q05Z41, 2012.
  • Chang L., R.A.D. Pattrick, G. van der Laan, V.S. Coker, and A.P. Roberts, Enigmatic X-ray magnetic circular dichroism in greigite, The Canadian Mineralogist, 50, 429-436, 2012.
  • Roberts, A.P., L. Chang, D. Heslop, F. Florindo, and J.C. Larrasoaña, Searching for single domain magnetite in the ‘pseudo-single-domain’ sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations, Journal of Geophysical Research, 117, B08104, 2012.
  • Deng, J., L. Chang, P. Wang, E. Zhang, J. Ma and T. Wang, Preparation and magnetic properties of CoWO4 nanocrystals, Crystal Research and Technology, doi: 10.1002/crat.201200130, 2012.
  • Larrasoaña, J.C, A.P. Roberts, L. Chang, J.D. Fitz Gerald, S.A. Schellenberg, R.D. Norris, and J.C. Zachos, Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene-Eocene thermal maximum, Earth and Planetary Science Letters, 333-334, 122-133, 2012.
  • Ma, J., W. Guo, X. Duan, T. Wang, W. Zheng and L. Chang, Growth of flower-like CdSe dendrites from a Brønsted acid–base ionic liquid precursor, RSC Advances, 2, 5944-5946, 2012.
  • Roberts, A.P., L. Chang, C.J. Rowan, C-S Horng and F. Florindo, Magnetic properties of sedimentary greigite (Fe3S4): An update, Review of Geophysics, 49, RG1002, 46 PP., 2011.
  • Roberts, A.P., F. Florindo, G. Villa, L. Chang, L. Jovane, S.M. Bohaty, J.C. Larrasoaña, D. Heslop, and J.D. Fitz Gerald, Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron, Earth and Planetary Science Letters, 310, 441-452, 2011.
  • Muxworthy, A.R. X. Ji, V. Ridley, Y. Pan, L. Chang, L. Wang, and A.P. Roberts, Multi-protocol palaeointensity determination from middle Brunhes Chron volcanics, Datong Volcanic Province, China, Physics of the Earth and Planetary Interiors, 187, 188-198, 2011.
  • Ma, J., L. Chang, J. Lian, Z. Huang, X. Duan, X. Liu, P. Peng, T. Kim, Z. Liu and W. Zheng, Ionic liquid-modulated synthesis of ferrimagnetic Fe3S4 hierarchical superstructures, Chemical Communications, 46, 5006–5008, 2010.
  • Chang, L., B.D. Rainford, J.R. Stewart, C. Ritter, A.P. Roberts, Y. Tang, and Q. Chen, Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction, Journal of Geophysical Research, 114, B07101, 2009.
  • Chang, L., A.P. Roberts, C.J. Rowan, Y. Tang, P. Pruner, Q. Chen and C-S. Horng, Low-temperature magnetic properties of greigite (Fe3S4), Geochemistry Geophysics Geosystems, 10, Q01Y04, 2009.
  • Chang, L., A.P. Roberts, Y. Tang, B.D. Rainford, A.R. Muxworthy, and Q. Chen, Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), Journal of Geophysical Research, 113, B06104, 2008.
  • Chang, L., A.P. Roberts, A.R. Muxworthy, et al., Magnetic characteristics of synthetic pseudo-single-domain and multi-domain greigite, Geophysical Research Letters, 34, L24304, 2007.
  • Roberts, A.P., Q. Liu, C.J. Rowan, L. Chang, C. Carvallo, J. Torrent, and C-S. Horng, Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams, Journal of Geophysical Research – Solid Earth, 111, B12S35, 2006.
  • Deng, C. L., Q. Wei, R. Zhu, H. Wang, R. Zhang, H. Ao, L. Chang, and Y. Pan, Magnetostratigraphic age of the Xiantai Paleolithic site in the Nihewan Basin and implications for early human colonization of Northeast Asia, Earth and Planetary Science Letters, 244, 336-348, 2006.
%d bloggers like this: